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The problem of the nuclear magnetic relaxation (NMR) due to hindered rotations in a crystal is treated 
considering the simple case of diatomic molecules assuming two antiparallel equilibrium orientations. An 
average time, TO, during which the molecule oscillates around an equilibrium orientation, and a constant 
jumping time, n , are introduced. The spectral density is calculated as a function of n and of T — n + r o . For 
n = 0 the spectral density introduced by Bloembergen et al. is found if one assumes r /2 = rc. For n?^0 and 
for cor<3Cl the spectral density diminishes as n increases. Correspondingly, the calculated TVs are, in general, 
longer than those calculated according to Bloembergen et al. 

1. INTRODUCTION 

T N the theory of nuclear magnetic relaxation it is 
-1 generally assumed that the fluctuations of the local 
field are due to particular random motions which justify 
the assumption of exponential correlation functions 
characterized by a correlation time rc. 

Such an assumption was introduced for the first time 
in the theory of Bloembergen et al. on nuclear magnetic 
relaxation.1 

By making substantially equivalent assumptions on 
the random processes which determine the correlation, 
Torrey2 considered the processes of self-diffusion in 
crystalline lattices and Gutowsky and Pake3 the 
hindered rotations in solids. 

The theory of Bloembergen et al. has been re-examined 
by Kubo and Tomita4 who, although they accept the 
assumptions of Bloembergen et al. on the random proc­
esses, introduce some corrections in the expressions for 
the relaxation times. 

However, if one takes some dynamic details of the 
molecular movements responsible for the relaxation 
into account, it may be justifiable to introduce two 
characteristic times instead of one into the correlation 
functions. 

The purpose of this work is to see what modifications 
of the previous theories are brought about by the intro­
duction of two characteristic times into the random 
processes. 

2. THE PRESENCE OF TWO CHARACTERISTIC TIMES 
IN SOME RELAXATION PROCESSES 

The possibility of introducing two characteristic 
times into the theory of relaxation is evident if we con­
sider two typical processes which may produce relaxa­
tion, i.e., hindered rotation of a molecule in a crystal 
and self-diffusion in a solid. 

In the case of a hindered rotation the local field 
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oscillates with the frequency of the pendular motions of 
a molecule until the molecule rotates through a certain 
angle and crosses a potential barrier. Since, in general, 
the pendular motion of a molecule does not come into 
play in the relaxation process, when calculating the 
spectral density we can assume that the local field 
maintains a constant value until a change in the orien­
tation of the molecule takes place. 

Let ro be the average time during which the molecule 
oscillates around its equilibrium position and n be the 
time spent by the molecule in performing a reorientation. 

I t seems reasonable to assume that n has about the 
same value for each jump of the molecule. In fact, n is, 
in general, of the order of the period of the pendular 
oscillations of the molecule. The validity of such an 
assumption will be discussed later. 

So if the relaxation is due to self-diffusion in a crystal, 
we may assume that the local field experienced by a spin 
remains approximately constant during an average time 
TQ until an atom jumps from one crystal site to another; 
also in this case the time r\ required for the jump may 
be assumed to be about the same for all jumps. I t 
should, in fact, be of the order of the reciprocal of the 
Debye frequency of the lattice. 

So, in general, if relaxation is due to hindered rotation 
or self-diffusion it may be assumed that a particular 
component of the local field may take stationary values 
for an average time r0. The number of such possible 
stationary values and their probability depends on the 
particular conditions, and the jump from one stationary 
value to another takes place during a time n which is 
approximately constant.5 

Such an assumption corresponds well enough to 
reality in the case where motions which cause the re­
laxation are characterized by a well-defined activation 
energy as in the case of a crystal. However, in the case 
of liquids which exhibit a quasicrystalline structure the 

6 We have presented this model and some preliminary conclu­
sions at the 11th Colloque Ampere, Eindhoven, 1962, Compte 
Rendu du lle Colloque (North-Holland Publishing Company, 
Amsterdam). Recently R. J. C. Brown, H. S. Gutowsky, and K. 
Shimomura, J. Chem. Phys. 38, 76 (1963), assumed a similar 
model for spin-rotational interaction in liquid CHFCI2. Neverthe­
less, the question is treated by these authors in a different way 
by assuming that relaxation can be attributed to the contributions 
of a step function and of a pulse function. 
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FIG. 1. Local field experienced by a nucleus of a diatomic molecule 
which jumps between two antiparallel orientations. 

assumption we made, i.e., the presence of two char­
acteristic times, should hold also to a certain extent. 

3. CALCULATION OF THE SPECTRAL DENSITY IN A 
PARTICULAR CASE OF HINDERED ROTATION 

For the sake of simplicity we shall limit ourselves to 
the case of hindered rotation and shall assume that the 
local field may take only two fixed values. 

Such an assumption may correspond, for example, to 
the case of a diatomic molecule or diatomic molecular 
group which can take only two opposite equilibrium 
orientations in the crystal. 

During a jump, the local field changes with a finite 
rate; nevertheless, in the present approximation we 
assume the local field to be a step function of the time, 
with the condition that n represents the shortest time 
between two subsequent jumps. We think that simpli­
fications inherent in the present approach could not 
affect appreciably the main features of the results. 

Let AF(t) denote a perturbation on the spin system 
due to nuclear motion, where A is a spin operator and 
F(t) a random function of time. 

According to the above assumption we take 

F(t) = ax(t), (1) 

where a is a positive constant and x(t) a random func­
tion of time which follows the random process discussed 
above, with constant value 1 and —1 (see Fig. 1). 

The mathematical problem consists in finding the 
spectral density associated with F(t). 

We consider a sequence of events defined by assuming 
that, when a time n is spent after the occurrence of 
given event [a change in value of F(t)2, the process is 
regenerated following a Poisson distribution with 

parameter a0= (T 0 ) _ 1 . The average time between suc­
cessive events will then be r = r 0 + r i . 

Let T(/) be a random variable denoting the number 
of events taking place in the interval (o,t). We assume 
that a stationary distribution of Y(t) exists. Let 
{U}i^i denote the sequence of times corresponding to 
the occurrence of the events, and let Ti=ti+i — U{i^ 1) 
denote the time between the i and the ( i+1) events. 
Denote by To the time up to the first event. 

The time differences { 7 \ - } ^ i are positive-independent 
random variables having the common distribution 
function, 

P(7\<0 = :$( / )= l - e x p [ -
- 0 

0( * -T f - ) ] , (2) 

A critical point is the choice of the distribution function 
for the positive random variable T0; for n ^ r0 we think 
a Poisson distribution with parameter a= ( r ) _ 1 will be 
a reasonable approximation: 

P ( r 0 ^ 0 = * ( 0 = l - e x p [ - a * ] - (3) 

From the definition of the Tiy the time up to the ^th 
event is given by 

v-l 

and let P(®y^t) = $y(i) denote the distribution func­
tion of &y. 

The probability 

that y events take place in a time interval (o,t) is found 
to be 

p(o,t) = l — $o(t) = exp(—at), 

p(y,t) = *v(t)-*v+i(t), ( y ^ l ) , 

where for y^2, the &y(t) can be determined by the re­
currence formula 

Jo 

starting from $ i (0 = <$o(0-6 

Neglecting those terms in the development of the 
series for e~(a~ao) which are higher than first order we 
obtain the following expression for $y(t). 

(4) 

* s ( 0 = e x p { - a o [ / - ( y - l ) r i ] } ( i : 
/ oo a0

nlt- (y- l ) n ] ( a 0 - a ) d0
v[t- {y- l ) n > 

ceo 

5 C ( / - ( y - l ) n ) , (5) 

where 3C(/) is the Heaviside step function. 
Let G{t) be a correlation function associated with F(t) given by 

G(t) = j:xx'Pi(x)p2(x,
9t\x)F*(x)F(x,)9 

where pi(x) and p2(x',t\x) are, respectively, the frequency function and the conditional frequency function asso­
ciated with random processes. 

(6) 

6 W. Feller, An Introduction to Probability Theory and its Applications (John Wiley & Sons, Inc., New York, 1957), 2nd ed., 
Vol. I. 
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In the present case we have 

M * ) = $($*,rH*.-i)> 

p2(x',t\x) = jt \j(2y,t)6XtS>+p(2y+l, t)8x, _ . ' ] . 

Inserting (1) and (7) in the right-hand member of (6), remembering (4), we obtain 

G(t) = a*{tx-p(-a0t)(l+(aa-a)t)+jt ( - l )» [* , , ( f l -** . i ( f l ]} • 

(7) 

(8) 
1/«1 

Taking into account the asymptotic behavior of &y(t) and the expression of the first derivative of &y+i(t) and 
integrating by parts, we get 

J(a>) = 2a2r 
2 (1 — x ~ sinxcor/cor) 

(l + cosxcor)2+(l — x~sinxwT/coT)2(cor)2 

X f 1— (1—x)2(w'r)2 cosxcor+( l~x) w ^ sinxcor 
-2JLT. 

1 - Y L X L[ l+ ( l - X )2 ( co r ) 2 ] 2 l + ( l - X ) 2 ( c o r ) 2 

(1 + cosxcor) cosxwr+( l~X~ s m X^A° ' r ) C 0 ' r sinxcor" 

+ (1 + cosxcor)2+ (1 — x ~~ sinxco r/cor)2 (cor)2 
(9) 

where x = ^ i A - I n (9), #2 may be interpreted as the 
quadratic quantity G{o) = {F*{t)F(t)). Figure 2 shows 
the behavior of /(co) for some values of r i / r . 

I t will be recognized that (9), when n—>0, i.e., 
r = r 0 , has the well-known form appropriate to an ex­
ponentially decaying correlation function, according to 

a Poisson process, and the spectral density coincides 
with the expression given by Bloembergen et at.1 taking 
r /2 = rc. For n / r ^ O /(w) exhibits a maximum in the 
neighborhood of cor = 1 becoming more and more sharp 
as the ratio n/r increases and correspondingly in the 
range cor<<Cl becomes more and more small. 

FIG. 2. J(co) versus 
G)T for different values of 
r i / r . 
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FIG. 3. The potential function U(0). 

4. THE VALIDITY OF THE ASSUMPTION 
TX = CONST 

We wish to investigate the limits of validity of the 
assumption of a constant jumping time; let us, there­
fore, examine what the distribution of the jumping 
time might be by assuming a simple model. We, there­
fore, consider a statistical ensemble of particles each of 
them moving in a potential field U(d) of the periodic 
type shown in Fig. 3, where 

U(d) = ffi62 for 

u(e)=uQ-%ai(e-do)2 for 2^0 

In the case we have considered, of a molecule with 
two opposite equilibrium orientations, we have 6Q=\T. 
Classical mechanics can be a sufficient approach to this 
problem. 

If E is the energy of the molecule and / its inertial 
moment, in the passage from an equilibrium position 
characterized by a minimum of potential energy to 
another equilibrium position the molecule spends a time 
TI given by 

' 1/2 ,.2*0 d6 

-® {E-umi 1/2 

I t can be assumed that most of the particles that over­
come the potential barrier have energies a little greater 
than UQ. Taking E = (rj+l)Uo, for v\ —» 0, n is given by 

n = (2.3 — lnr))rv, 

where TV= ( /0O
2 /4£/O)1 / 2 is the period of the pendular 

motions of the molecule. 
The function f(rhUo/kT)drh which is the proba­

bility that the jumping time n lies between n and 
T i + d n , can be evaluated by assuming that the dis­
tribution of molecular energies is governed by Maxwell-
Boltzmann statistics 

/ U0\ U0 / n \ 

Xexp -9.58—expl 
kT (~1 I T , . (10) 

On the other hand, if {n) is the mean value of n , it 
seems reasonable to suppose that r i / ro is equal to the 
ratio of the number of particles whose energy is greater 

than Z7o to the number of particles whose energy is less 
than UQ, that is: 

<n) exp(-U0/kT) 

TO l - e x p ( - Z 7 o A r ) 

I t is, thus, possible to find the distribution functions 
/ ( r i ; ( T I ) / T ) for some values of {TI) /T . The graph of 
the distribution function / ( r i / r„ ,{ r i ) / r ) for some values 
of (TI)/T as a function of n is shown in Fig. 4. 

As in the calculation of the spectral density it has 
been assumed n = const we may verify the validity of 
such a hypothesis for a particular value n/r by com­
paring the spectral densities as calculated for n = const 
== ( n ) with that calculated by performing a weighted 
average of the spectral density corresponding to a 
distribution / ( T I , ( T I ) / T ) . 

We were able to verify that the assumption n = const 
= ( n ) does not introduce a substantial error in the cal­
culation of the spectral density for O ^ r i / r ^ O . 1 5 ; the 
spectral density calculated for n/r = 0,2 and shown in 
Fig. 2 (dashed line) can be accepted only with a certain 
approximation. 

5. SPIN-LATTICE RELAXATION TIME 

The relaxation due to the hindered rotations depends 
on the orientation of the molecules. If we assume that 
the axes of rotation are isotropically distributed we may 
perform a comparison with the Bloembergen theory. In 
this hypothesis the spin-lattice relaxation time T\ is 
given by 

l / r 1 = Z-[/(co)+4/(co)], (11) 

where K is a constant depending on the nuclear spins 
and on the nuclear gyromagnetic ratios. 

In Fig. 5 Ti/coo is plotted versus rco0 (o)0 Larmor fre-

<'C,>/-C-0.05 

<-C,>/c=0.2 

FIG. 4. The distribution function / (T I /T„ , (T\)/T) 
versus TI/TV for different values of (TI)/T, 
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FIG. 5. 7Vco0 in arbi- * 
trary units versus COQT 
(coo, Larmor frequency) 
for different values of 
n/r. 
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quency) for different values of n / r evaluated by as­
suming for J (co) the expression (9). For n / r = 0 the be­
havior of Ti as function of r coincides with the behavior 
of Ti as function of rc proposed by Bloembergen assum­
ing r/2=rc. 

For T I / T ? ^ 0 and for cor<<Cl the TVs calculated are 
longer than those calculated by Bloembergen et at. 

CONCLUSIONS 

The spectral density calculated under the assumption 
that a diatomic molecule jumps between two anti-
parallel equilibrium orientations with an average semi-
period T=T 0+Ti (r0 average time spent in an equilib­

rium position, n jump time) is in general different from 
the spectral density calculated following the theory of 
Bloembergen et al. assuming r /2 as correlation time. 

The TVs calculated with the jumping molecule model 
are higher than the TVs calculated following the theory 
of Bloembergen et at. in the range cor<<Cl. I t is probable 
that such an effect may occur in general when the re­
laxation is due to motions controlled by an activation 
energy. 
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